Ein Forscherteam aus Gießen, Hannover, Magdeburg und Singapur deckt einen neuen Mechanismus der Gewebsschädigung beim Myokardinfarkt auf. Schlüssel zur Behandlung ist die intravenöse Gabe des kardio-protektiven Enzyms RNase1.
Genau wie ein öffentlicher Feuermelder trägt jede unserer Körperzellen einen automatischen Alarmmechanismus in ihrem Zellinnern: Sobald eine Zelle durch Zellstress, Sauerstoffarmut, Verletzung oder Infektion geschädigt wird, werden intrazelluläre Moleküle freigesetzt, die normalerweise im Extrazellularraum nicht zu finden sind. Diese aus dem Zytoplasma oder dem Zellkern stammenden "Alarmine" melden den intakten Zellen die Notsituation über bestimmte Alarmrezeptoren. Erreicht diese Nachricht die patrouillierenden Immunzellen unserer Körperabwehr, reagieren diese mit der Aktivierung eines Entzündungsreizes, der den Schaden behebt oder zumindest begrenzt.
Kommt es allerdings zu einer massiven Anhäufung von Alarmmolekülen, können diese trotz Immunabwehr eine sehr schädigende Wirkung ausüben und z. B. Gewebe zerstören. Diese Zusammenhänge haben Forscherinnen und Forscher aus vier kardiovaskulären Forschungszentren unter der Leitung von Prof. Dr. Daniel Sedding, Medizinische Hochschule Hannover, und Prof. Dr. Klaus T. Preissner, Justus-Liebig-Universität Gießen (JLU), unter Beteiligung von Kolleginnen und Kollegen aus Magdeburg und Singapur für bestimmte Teilprozesse des Myokardinfarktes charakterisiert.
Aus ihren früheren Studien an kardiologischen Patienten war den Wissenschaftlern bekannt, dass bei einem akuten Herzinfarkt extrazelluläre Ribonukleinsäure (eRNA) als Alarmstoff vom Myokardgewebe freigesetzt wird und eine massive Entzündungsreaktion im Herzen auslöst. Die dadurch erhöhten Zytokinspiegel provozieren eine weitere Ausschüttung von eRNA aus Herzmuskelzellen, sodass diese sich verstärkende Spirale zum Verlust von gesundem Herzgewebe führt. Wird die zellschädigende eRNA allerdings durch ein spezifisches Enzym – die RNase1 – abgebaut, bevor sie Unheil anrichten kann, lässt sich die Infarktgröße drastisch reduzieren und Herzgewebe retten. Da die normalen im Blut enthaltenen Mengen an RNase1 für diese Therapie nicht ausreichen, muss der Wirkstoff durch intravenöse Injektion zugeführt werden.
Die Forscher konnten zeigen, dass die beim Herzinfarkt beobachtete Gefäßerweiterung und Ödembildung, die die Herzfunktion massiv behindern, auch von der Menge an freigesetzter eRNA abhängt. Basierend auf den zuvor gemachten Erfahrungen mit RNase1 konnte die intravenöse Gabe dieses kardio-protektiven Enzyms im präklinischen Herzinfarktmodell nicht nur die Ödembildung reduzieren, sondern auch die Durchblutung des betroffenen Herzgewebes fördern. Die Folge war, dass deutlich mehr vitales Myokardgewebe erhalten blieb und die Herzfunktionen verbessert waren.
"Aufgrund seiner hohen Stabilität und nicht-toxischen Wirkung kann die Therapie mit dem natürlichen Wirkstoff RNase1 nicht nur die schädigenden Funktionen der eRNA verhindern, sondern ist offenbar auch frei von unerwünschten Nebenwirkungen", sagt der Biochemiker Prof. Dr. Preissner.
Nun soll geklärt werden, ob im Rahmen einer chirurgischen Herzinfarktbehandlung der Einsatz mit RNase1 weitere positive Wirkungen zeigt: "Dieser kardiologische Eingriff räumt nicht nur den für die Gefäßverstopfung verantwortlichen Plaque weg, sondern ist auch immer mit der Zerstörung von benachbartem Gewebe der Gefäßwand und dem Auftreten von eRNA verbunden", so Prof. Dr. Sedding. "Daher könnte die lokale Katheder-Applikation von RNase1 in diesen Fällen eine weitere Schutzwirkung bringen". Diese Zusammenhänge wird das Forscherteam in einem weiteren Kooperationsprojekt verfolgen.