Wissenschaftlerinnen und Wissenschaftler aus dem Sonderforschungsbereich 1.261 "Magnetoelectric Sensors" der Christian-Albrechts-Universität zu Kiel (CAU) haben jetzt ein neues Sensorkonzept entwickelt, um in Zukunft besonders niedrige Frequenzen von Herz- und Hirnströmen zu messen.
Die extrem kleinen, energieeffizienten Sensoren eignen sich besonders gut für medizinische Anwendungen oder mobile Mikroelektronik. Möglich wird das durch die Verwendung von Elektreten. Dieses Material ist permanent elektrisch aufgeladen und kommt auch in Mikrofonen für Hörgeräte oder Mobiltelefone zum Einsatz. Das Forschungsteam stellt sein Sensorkonzept in einem Sonderband der renommierten Zeitschrift Nano Energy vor.
Im gemeinsamen Forschungsprojekt von Professor Rainer Adelung, Arbeitsgruppe Funktionale Nanomaterialien und Professor Franz Faupel, Arbeitsgruppe für Materialverbunde, dreht sich alles um sogenannte Biegebalken-Sensoren. Sie bestehen aus einem dünnen Silizium-Streifen, auf dem zwei Schichten aufgebracht sind: Die erste reagiert auf Magnetfelder, die zweite kann eine elektrische Spannung abgeben. "Tritt ein Magnetfeld auf, verformt sich die erste Schicht und verbiegt damit den ganzen Balken: Er schwingt, ähnlich wie ein Sprungbrett im Schwimmbad", erklärt SFB-Mitglied Faupel das Grundprinzip. Die zweite Schicht gibt durch ihre Verformung ein messbares Spannungssignal ab.
"Mit unserem neuen Sensorkonzept wollten wir diese Umwandlung von mechanische in elektrische Energie noch effektiver gestalten, indem wir dem Biegebalken mehr Schwung verleihen", erklärt Doktorandin Marleen Schweichel. Je stärker der Balken schwingt, desto stärker das ausgesendete elektrische Signal.
Normalerweise schwingen weiche Materialien wie Kunststoffe mit niedriger Frequenz. Die Schwingung ist also stark gedämpft und das ausgesendete Signal nur sehr gering. Mit harten Materialien lässt sich so eine starke Dämpfung vermeiden. Hierfür wird aber eine größere Materialmasse benötigt, die sich in den kleinen Dimensionen der Sensortechnik kaum einbauen lässt.
"Mit unserem Ansatz konnten wir einen kleinen Biegebalken aus hartem Material dazu bringen, sich wie ein weiches Material zu verhalten und bei niedrigen Frequenzen zu schwingen – und das sogar noch mit größerer Amplitude", fasst Adelung die Besonderheit ihrer Entdeckung zusammen.
Entscheidend war hierfür der Elektret. Dieses permanent elektrisch aufgeladene Material brachte das Forschungsteam unter dem Biegebalken an. Normalerweise drängt der in Schwingung gebrachte Balken zurück in seine Ausgangsposition. Der Elektret zieht ihn durch seine Eigenspannung jedoch in die Gegenrichtung und vergrößert damit die Schwingung des Balkens – und damit das elektrische Signal des Sensors.
Um dieses Signal möglichst exakt auslesen zu können, integrierte das Forschungsteam in sein alternatives Sensorkonzept außerdem einen neuen Ansatz zur Rauschunterdrückung. Mit einer extrem schnellen Messung lassen sich gewissermaßen die einzelnen Signale zwischen dem Rauschen erfassen, so Erstautorin Mona Mintken aus der Arbeitsgruppe "Funktionale Nanomaterialien".
Dank der in den Sensoren verwendeten Elektrete lassen sich nicht nur niedrige Frequenzen besser messen. Ähnlich wie Permanentmagnete, die ohne Stromversorgung dauerhaft magnetisch sind, erzeugen auch Elektrete ihr permanentes elektrisches Feld selbst. "Der Elektret verleiht dem Sensor damit ein eingebautes elektrisches Potential. Der Sensor selbst benötigt somit keine externe Stromversorgung und kann für mobile Anwendungen eingesetzt werden", erklärt Doktorand Stefan Schröder. Er forschte im Rahmen einer Kooperation drei Monate am Massachusetts Institute of Technology (MIT) in den USA, um die benötigten speziellen Elektretschichten weiter zu verbessern. Dafür nutzte er das iCVD-Verfahren (initiierte chemische Gasphasenabscheidung), mit dem sich einzelne Materialschichten hochpräzise abscheiden lassen.
"Elektrete funktionieren wie eine Art Nanogenerator, der elektrische Energie erzeugt – und das theoretisch über zwanzig Jahre lang", so Materialwissenschaftler Faupel. "Sensoren mit eigener Stromversorgung in diesen kleinen Dimensionen sind auch spannend für Anwendungen im Bereich 'Internet of Things', die dezentrale, autark arbeitende elektronische Systeme vernetzen", ergänzt Adelung.
Referenzen:
Nanogenerator and piezotronic inspired concepts for energy efficient magnetic field sensors, Mona Mintken, Marleen Schweichel, Stefan Schröder, Sören Kaps, Jürgen Carstensen, Yogendra Kumar Mishra, Thomas Strunskus, Franz Faupel, Rainer Adelung, Nano Energy Volume 56, 2019, Pages 420-425
https://doi.org/10.1016/j.nanoen.2018.11.031
esanum bietet ein umfassendes Informationsangebot ✓ 120 Fortbildungen & CME-Kurse ✓ aktuelle Fachbeiträge ✓ relevante Artikel der Ärzte-Redaktion